Search results for "physical parameter retrieval"

showing 5 items of 5 documents

Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval

2018

This paper introduces a feature selection method based on random forest -the Guided Regularized Random Forest (GRRF)- which can be used in classification and regression tasks. The method is based on the regularization of the information gain in the random forest nodes to obtain a subset of relevant and non-redundant features. The proposed method is used as a preliminary step In the process of retrieving biophysical parameters from a hyperspectral image. Preliminary experiments show that we can reduce the RMSE of the retrievals by around 7% for the Leaf Area Index and around 8% for the fraction of vegetation cover when compared to the results using random forest features.

Mean squared error22/3 OA procedurebusiness.industryComputer scienceFeature extractionHyperspectral images0211 other engineering and technologiesHyperspectral imagingPattern recognitionFeature selection02 engineering and technologyBiophysical parameter retrievalRegularization (mathematics)RegressionRandom forestFeature selection0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceLeaf area indexbusinessRandom forest021101 geological & geomatics engineeringIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion

2020

Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based reflectance models is an interesting approach for estimating chlorophyll concentrations that are good indicators of vegetation health. The objective of this study was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional neural network. The inversion results and retrieved values are validated in two ways: A classical machine learning val…

Chlorophyll boptical propertiesChlorophyll aklorofylli010504 meteorology & atmospheric sciencesCorrelation coefficientStochastic modelling0211 other engineering and technologiesconvolutional neural network02 engineering and technologyneuroverkotoptiset ominaisuudet01 natural sciencesConvolutional neural networkchemistry.chemical_compoundchlorophylllcsh:Scienceoptical properties; convolutional neural network; deep learning; chlorophyll; stochastic modeling; physical parameter retrieval; forestry021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingstokastiset prosessitbusiness.industryDeep learningspektrikuvausforestryHyperspectral imagingdeep learningmetsänarviointikoneoppiminenchemistryChlorophyllGeneral Earth and Planetary Scienceslcsh:QArtificial intelligencekaukokartoitusmetsänhoitobusinessphysical parameter retrievalstochastic modelingRemote Sensing; Volume 12; Issue 2; Pages: 283
researchProduct

Optimized and automated estimation of vegetation properties: Opportunities for Sentinel-2

2014

La Biosfera es uno de los principales sistemas que conforman la Tierra. Su estudio permite comprender la relación entre la vegetación y el ciclo del carbono y cómo éste puede ser afectado por los cambios en los niveles de CO2 y los usos de suelo. Para el estudio de estas dinámicas a escala global y local, han sido desarrollados diversos modelos que son representaciones de la realidad en una escala y complejidad más simple. Parte de las variables de entrada de estos modelos son obtenidas mediante medidas de teledetección gracias al Global Climate Observing System (GCOS), que ha determinado un conjunto de 50 variables climáticas esenciales que contribuyen a los estudios de cambio climático qu…

:CIENCIAS TECNOLÓGICAS [UNESCO]:CIENCIAS TECNOLÓGICAS::Tecnología del espacio [UNESCO]leaf area indexUNESCO::CIENCIAS TECNOLÓGICAS::Tecnología del espacio:CIENCIAS DE LA TIERRA Y DEL ESPACIO::Otras especialidades de la tierra espacio o entorno [UNESCO]biophysical parameter retrievalradiative transfer models:CIENCIAS DE LA TIERRA Y DEL ESPACIO [UNESCO]leaf chlorophyll contentUNESCO::CIENCIAS TECNOLÓGICASLUT-based inversionempirical regression modelsmachine learningUNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO::Otras especialidades de la tierra espacio o entornoSentinel-2UNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO
researchProduct

Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion

2020

In this study, we compare six different machine learning methods in the inversion of a stochastic model for light propagation in layered media, and use the inverse models to estimate four parameters of the skin from the simulated data: melanin concentration, hemoglobin volume fraction, and thicknesses of epidermis and dermis. The aim of this study is to determine the best methods for stochastic model inversion in order to improve current methods in skin related cancer diagnostics and in the future develop a non-invasive way to measure the physical parameters of the skin based partially on the results of the study. Of the compared methods, which are convolutional neural network, multi-layer …

skinlcsh:TspektrikuvausPhysics::Medical Physicsconvolutional neural networkneuroverkotdiagnostiikkaneural networkslcsh:Technologylcsh:QC1-999model inversionihosyöpälcsh:Chemistrykoneoppiminenkuvantaminenmachine learninglcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040lcsh:Engineering (General). Civil engineering (General)physical parameter retrievallcsh:QH301-705.5lcsh:PhysicsApplied Sciences
researchProduct

On the semi-automatic retrieval of biophysical parameters based on spectral index optimization

2014

Abstract: Regression models based on spectral indices are typically empirical formulae enabling the mapping of biophysical parameters derived from Earth Observation (EO) data. Due to its empirical nature, it remains nevertheless uncertain to what extent a selected regression model is the most appropriate one, until all band combinations and curve fitting functions are assessed. This paper describes the application of a Spectral Index (SI) assessment toolbox in the Automated Radiative Transfer Models Operator (ARTMO) package. ARTMO enables semi-automatic retrieval and mapping of biophysical parameters from optical remote sensing observations. The SI toolbox facilitates the assessment of biop…

Polynomialleaf area indexLogarithmbiophysical parameter retrievalEconomicsImaging spectrometerleaf chlorophyll contentempirical regression modelsCalibrationRadiative transferCurve fittingspectral indicesGeneral Earth and Planetary Scienceslcsh:Qlcsh:ScienceShortwaveGUI toolboxHyMapHyMapRemote sensingMathematics
researchProduct